\(\int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^4} \, dx\) [62]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 119 \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^4} \, dx=-\frac {b c \sqrt {d-c^2 d x^2}}{6 x^2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 d x^3}-\frac {b c^3 \sqrt {d-c^2 d x^2} \log (x)}{3 \sqrt {-1+c x} \sqrt {1+c x}} \]

[Out]

-1/3*(-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/d/x^3-1/6*b*c*(-c^2*d*x^2+d)^(1/2)/x^2/(c*x-1)^(1/2)/(c*x+1)^(1/2
)-1/3*b*c^3*ln(x)*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {5917, 74, 14} \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^4} \, dx=-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 d x^3}-\frac {b c \sqrt {d-c^2 d x^2}}{6 x^2 \sqrt {c x-1} \sqrt {c x+1}}-\frac {b c^3 \log (x) \sqrt {d-c^2 d x^2}}{3 \sqrt {c x-1} \sqrt {c x+1}} \]

[In]

Int[(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x^4,x]

[Out]

-1/6*(b*c*Sqrt[d - c^2*d*x^2])/(x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - ((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]
))/(3*d*x^3) - (b*c^3*Sqrt[d - c^2*d*x^2]*Log[x])/(3*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 74

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[(a*c + b*
d*x^2)^m*(e + f*x)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[n, m] && Integer
Q[m] && (NeQ[m, -1] || (EqQ[e, 0] && (EqQ[p, 1] ||  !IntegerQ[p])))

Rule 5917

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(d*f*(m + 1))), x] + Dist[b*c*(n/(f*(m + 1)))*Simp[
(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*A
rcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m
+ 2*p + 3, 0] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 d x^3}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int \frac {(-1+c x) (1+c x)}{x^3} \, dx}{3 \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 d x^3}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int \frac {-1+c^2 x^2}{x^3} \, dx}{3 \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 d x^3}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int \left (-\frac {1}{x^3}+\frac {c^2}{x}\right ) \, dx}{3 \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {b c \sqrt {d-c^2 d x^2}}{6 x^2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {arccosh}(c x))}{3 d x^3}-\frac {b c^3 \sqrt {d-c^2 d x^2} \log (x)}{3 \sqrt {-1+c x} \sqrt {1+c x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.74 \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^4} \, dx=\frac {\sqrt {d-c^2 d x^2} \left (\frac {(-1+c x)^{3/2} (1+c x)^{3/2} (a+b \text {arccosh}(c x))}{3 x^3}-\frac {1}{3} b c \left (\frac {1}{2 x^2}+c^2 \log (x)\right )\right )}{\sqrt {-1+c x} \sqrt {1+c x}} \]

[In]

Integrate[(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x^4,x]

[Out]

(Sqrt[d - c^2*d*x^2]*(((-1 + c*x)^(3/2)*(1 + c*x)^(3/2)*(a + b*ArcCosh[c*x]))/(3*x^3) - (b*c*(1/(2*x^2) + c^2*
Log[x]))/3))/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Maple [A] (verified)

Time = 1.18 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.29

method result size
default \(-\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3 d \,x^{3}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, c^{2} x^{2}+2 c^{3} x^{3} \operatorname {arccosh}\left (c x \right )-2 \ln \left (1+\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}\right ) x^{3} c^{3}-2 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}-c x \right )}{6 \sqrt {c x -1}\, \sqrt {c x +1}\, x^{3}}\) \(153\)
parts \(-\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3 d \,x^{3}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, c^{2} x^{2}+2 c^{3} x^{3} \operatorname {arccosh}\left (c x \right )-2 \ln \left (1+\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}\right ) x^{3} c^{3}-2 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}-c x \right )}{6 \sqrt {c x -1}\, \sqrt {c x +1}\, x^{3}}\) \(153\)

[In]

int((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^4,x,method=_RETURNVERBOSE)

[Out]

-1/3*a/d/x^3*(-c^2*d*x^2+d)^(3/2)+1/6*b*(-d*(c^2*x^2-1))^(1/2)*(2*(c*x+1)^(1/2)*arccosh(c*x)*(c*x-1)^(1/2)*c^2
*x^2+2*c^3*x^3*arccosh(c*x)-2*ln(1+(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)*x^3*c^3-2*arccosh(c*x)*(c*x-1)^(1/2)*(
c*x+1)^(1/2)-c*x)/(c*x-1)^(1/2)/(c*x+1)^(1/2)/x^3

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 220 vs. \(2 (99) = 198\).

Time = 0.29 (sec) , antiderivative size = 462, normalized size of antiderivative = 3.88 \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^4} \, dx=\left [\frac {2 \, {\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt {-c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) + {\left (b c^{5} x^{5} - b c^{3} x^{3}\right )} \sqrt {-d} \log \left (\frac {c^{2} d x^{6} + c^{2} d x^{2} - d x^{4} + \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} {\left (x^{4} - 1\right )} \sqrt {-d} - d}{c^{2} x^{4} - x^{2}}\right ) + \sqrt {-c^{2} d x^{2} + d} {\left (b c x^{3} - b c x\right )} \sqrt {c^{2} x^{2} - 1} + 2 \, {\left (a c^{4} x^{4} - 2 \, a c^{2} x^{2} + a\right )} \sqrt {-c^{2} d x^{2} + d}}{6 \, {\left (c^{2} x^{5} - x^{3}\right )}}, -\frac {2 \, {\left (b c^{5} x^{5} - b c^{3} x^{3}\right )} \sqrt {d} \arctan \left (\frac {\sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} {\left (x^{2} + 1\right )} \sqrt {d}}{c^{2} d x^{4} - {\left (c^{2} + 1\right )} d x^{2} + d}\right ) - 2 \, {\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt {-c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - \sqrt {-c^{2} d x^{2} + d} {\left (b c x^{3} - b c x\right )} \sqrt {c^{2} x^{2} - 1} - 2 \, {\left (a c^{4} x^{4} - 2 \, a c^{2} x^{2} + a\right )} \sqrt {-c^{2} d x^{2} + d}}{6 \, {\left (c^{2} x^{5} - x^{3}\right )}}\right ] \]

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^4,x, algorithm="fricas")

[Out]

[1/6*(2*(b*c^4*x^4 - 2*b*c^2*x^2 + b)*sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 - 1)) + (b*c^5*x^5 - b*c^3*x
^3)*sqrt(-d)*log((c^2*d*x^6 + c^2*d*x^2 - d*x^4 + sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*(x^4 - 1)*sqrt(-d) -
d)/(c^2*x^4 - x^2)) + sqrt(-c^2*d*x^2 + d)*(b*c*x^3 - b*c*x)*sqrt(c^2*x^2 - 1) + 2*(a*c^4*x^4 - 2*a*c^2*x^2 +
a)*sqrt(-c^2*d*x^2 + d))/(c^2*x^5 - x^3), -1/6*(2*(b*c^5*x^5 - b*c^3*x^3)*sqrt(d)*arctan(sqrt(-c^2*d*x^2 + d)*
sqrt(c^2*x^2 - 1)*(x^2 + 1)*sqrt(d)/(c^2*d*x^4 - (c^2 + 1)*d*x^2 + d)) - 2*(b*c^4*x^4 - 2*b*c^2*x^2 + b)*sqrt(
-c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 - 1)) - sqrt(-c^2*d*x^2 + d)*(b*c*x^3 - b*c*x)*sqrt(c^2*x^2 - 1) - 2*(a
*c^4*x^4 - 2*a*c^2*x^2 + a)*sqrt(-c^2*d*x^2 + d))/(c^2*x^5 - x^3)]

Sympy [F]

\[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^4} \, dx=\int \frac {\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{x^{4}}\, dx \]

[In]

integrate((a+b*acosh(c*x))*(-c**2*d*x**2+d)**(1/2)/x**4,x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x))/x**4, x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.31 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.26 \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^4} \, dx=\frac {{\left (c^{4} d^{2} \sqrt {-\frac {1}{c^{4} d}} \log \left (x^{2} - \frac {1}{c^{2}}\right ) + i \, \left (-1\right )^{-2 \, c^{2} d x^{2} + 2 \, d} c^{2} d^{\frac {3}{2}} \log \left (-2 \, c^{2} d + \frac {2 \, d}{x^{2}}\right ) + \frac {\sqrt {-c^{4} d x^{4} + 2 \, c^{2} d x^{2} - d} d}{x^{2}}\right )} b c}{6 \, d} - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} b \operatorname {arcosh}\left (c x\right )}{3 \, d x^{3}} - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} a}{3 \, d x^{3}} \]

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^4,x, algorithm="maxima")

[Out]

1/6*(c^4*d^2*sqrt(-1/(c^4*d))*log(x^2 - 1/c^2) + I*(-1)^(-2*c^2*d*x^2 + 2*d)*c^2*d^(3/2)*log(-2*c^2*d + 2*d/x^
2) + sqrt(-c^4*d*x^4 + 2*c^2*d*x^2 - d)*d/x^2)*b*c/d - 1/3*(-c^2*d*x^2 + d)^(3/2)*b*arccosh(c*x)/(d*x^3) - 1/3
*(-c^2*d*x^2 + d)^(3/2)*a/(d*x^3)

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^4} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^4,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^4} \, dx=\int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2}}{x^4} \,d x \]

[In]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2))/x^4,x)

[Out]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2))/x^4, x)